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THERMODYNAMICS OF FINITE STRAIN

ELASTIC–INELASTIC DEFORMATION

UDC 539.3A. A. Rogovoi

The kinematic relations describing elastic–inelastic deformation that coincide in shape with the well-
known Lie representation but are free from the drawback of the latter are extended to the case of
thermo-elastic–inelastic deformation with finite strains. The limitations imposed on the kinematics
by the principle of objectivity are considered. Relations for the stresses and entropy are derived from
the laws of thermodynamics, and a heat-conduction equation is constructed.

Key words: thermo-elastic–inelastic finite strains, kinematics, thermodynamics, principle of
objectivity.

1. Kinematic Relations. An approach to constructing the constitutive equations of complex media for
finite elastic–inelastic deformation was proposed in [1–3]. The kinematics of the process is described by a relation
which takes into account the real history of elastic–inelastic deformation, i.e., any sequence and duration of purely
elastic and purely inelastic deformations:

F = f · F∗. (1.1)

Here F , f , and F∗ are the elastic–inelastic site gradients which transform the initial configuration to the current one,
an intermediate configuration close to the current one to the actual configuration, and the initial configuration to
the intermediate one. Because of the similarity between the intermediate and current configurations, f = fE ·fIN =
fIN · fE (fE and fIN are the elastic and inelastic site gradients, respectively). In [3], the inelastic (FIN ) and
purely elastic (FE) kinematics were extracted from the kinematics (1.1) using the concepts of a matricant and a
multiplicative integral. As a result, relation (1.1) is represented as

F = FE · FIN , (1.2)

where all site gradients are determined at the current time t. Representation (1.2) coincides in form with the well-
known Lie representation but it is free from the drawbacks of the latter. In particular, from this representation,
it follows that the total displacement rate deformation D is the sum of the elastic rate deformation DE and the
inelastic rate deformation DIN , the elastic site gradient FE remains unchanged under purely inelastic changes in
the configuration, and the inelastic site gradient remains unchanged under its purely elastic changes.

The expressions for FE and FIN obtained in [3] have the form

FE = (g + εhE) · FE∗; (1.3)

FIN = (g + εF−1
E∗ · hIN · FE∗) · FIN∗. (1.4)

Here g is the unit tensor; the site gradients with the subscript asterisk correspond to the time t∗, and the site
gradients without the subscript corresponding to the current time t (t−t∗ = ετ , where τ > 0 and ε is a small positive
parameter); hE and hIN are the elastic and inelastic displacement gradients with respect to the configuration defined
by F∗, which are represented in terms of the symmetric part eE and eIN (small strains) and the skew-symmetric
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part dE and dIN (small rotations), and e = eE + eIN and d = dE + dIN are the total small strains and rotations
(these and only these strains and rotations are compatible).

According to relation (1.2), the Cauchy–Green strain measure C = F t · F is written as C = F t
IN ·CE · FIN ,

where CE = F t
E · FE . In view of (1.3) and (1.4), this measure can be represented as

C = C∗ + 2εF t
∗ · (eE + eIN) · F∗, F∗ = FE∗ · FIN∗, C∗ = F t

∗ · F∗ (1.5)

or

C = C� + 2εF t
� · eE · F�, F� = FE� · FIN , C� = F t

� · F�. (1.6)

Here the quantities with the subscript ∗ correspond to the intermediate configuration κ1, and the quantities with
the subscript � to the intermediate elastic configuration κ2 (see the figure in [3]) at the same time t∗. According to
these relations, as the intermediate configuration κ1 tends to the current configuration (F∗ → F and C∗ → C) and
as the intermediate elastic configuration κ2 tends to the current configuration (F� → F and C� → C), the passage
to the limit gives two increments and two rates of change in the strain measure C:

(dC)κ1 = 2F t · (deE + deIN ) · F,

(Ċ)κ1 = 2F t · (ėE + ėIN ) · F = 2F t · (DE + DIN ) · F
with respect to the configuration κ1 (the total increment and the total rate of change in the tensor C) and

(dC)κ2 = 2F t · deE · F,

(Ċ)κ2 = 2F t · ėE · F = 2F t · DE · F (1.7)

with respect to the configuration κ2 (the increment and rate of change in the tensor C due to only elastic deforma-
tion). Therefore, the tensor given by relation (1.5) will be denoted by Cκ1 , and the tensor given by relation (1.6)
by Cκ2 . In the relations for the increments and rates, DE = ėE and DIN = ėIN are the rate deformation tensors
for the corresponding displacements, which in this case coincide with the strain rate tensors.

As in [3], the temperature effect is taken into account by representing the kinematics of the thermo-elastic–
inelastic process as F = fE ·fIN ·fΘ ·F∗, where fΘ is the site gradient that correspond to small temperature strains;
F∗ is the thermo-elastic–inelastic site gradient that transform the initial configuration to the intermediate one. In
this case, all site gradients given by small strains commute with each other. As in [3], we obtain

F = FE · FIN · FΘ = [g + ε(hE + hIN + hΘ)] · F∗,

F∗ = FE∗ · FIN∗ · FΘ∗.
(1.8)

Here FE and FIN are given by relations (1.3) and (1.4) and hΘ is the temperature rate gradient with respect to the
configuration F∗;

FΘ = (g + εF−1
IN∗ · F−1

E∗ · hΘ · FE∗ · FIN∗) · FΘ∗. (1.9)

(We note that in relations (1.8) and (1.9), the subscripts IN and Θ can be interchanged.) As a result, the total
small strains and rotations are given by the expressions e = eE + eIN + eΘ, d = dE + dIN + dΘ, where eΘ and
dΘ are the symmetric and skew-symmetric parts of hΘ.

Similarly to [3], it is easy to show that the total displacement rate deformation D is the sum of the elastic
rate deformation DE , the inelastic rate deformation DIN , and the temperature rate deformation DΘ; the elastic
site gradient remains unchanged under purely inelastic and temperature changes in the configuration, the inelastic
site gradient under purely elastic and temperature in the configuration, and the temperature site gradient under
purely elastic and inelastic changes. The increment and rate of change in the Cauchy–Green strain measure C with
respect to the intermediate elastic configuration κ2 is given by relation (1.7), in which the total site gradient is
defined by expression (1.8).

2. Relations Implied by the Laws of Thermodynamics. We write the thermodynamic Clausius–
Duhem inequality as

T ··D − ρ(Ψ̇ + Θ̇s) − q · ∇̃ ln Θ � 0,
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where ρ, Ψ, and s are the mass density in the current configuration and the specific (referred to unit mass)
free energy and entropy, q is the heat flux vector, ∇̃ is the Hamilton operator in the current configuration, and
D = ėE + ėIN + ėΘ is the tensor of total displacement rate deformation. According to the principle of objectivity,
the arguments of the function Ψ can be only invariant quantities, i.e., only any kinematic quantity invariant under
rigid rotation of the current configuration, the temperature Θ, and a finite number of internal parameters χi

(i = 1, . . . , m) — objective scalar functions that characterize the change in the internal structure of the material
during elastic–inelastic deformation. As the kinematic quantity, we use the tensor C and represent the specific free
energy Ψ = Ψ(C, χi, Θ) as Ψ(C, χi, Θ) = Ψ1(C, χi, Θ)+Ψ2(Θ), assuming that: 1) Ψ̇1 = 0 if (Ċ)κ2 = 0 ((dC)κ2 = 0;
2) Ψ2 = 0 if Θ = Θ0. Here Θ0 is the reduction temperature in Kelvin (usually, room temperature). According to the
first condition [see (1.7)], if there is no change in the elastic strain (ėE = DE = 0), then Ψ1 also remains unchanged.
Therefore, any elastic–inelastic process is treated as an elastic process with a stressed reference configuration and
is modeled by a series connection of elastic, inelastic, and temperature elements. As is assumed in many papers
(see, for example, [4–8]), the quantity Ψ1 is the energy accumulated in the elastic element. The first condition is
satisfied by the functional W1 introduced in [3]:

W1 =

t∫

0

( τ∫

0

∂2W

∂C2
E

·· Ċκ2 dτ1

)
·· Ċκ2 dτ. (2.1)

Here W is the elastic potential which depends only on the elastic kinematics, which, in turn, depends on Cκ2 [see
relation (1.6)]. If we assume that the constants ak (k = 1, . . . , n) of this elastic potential are functions of the
inelastic kinematics and temperature [ak = ak(χi, Θ)], the independent variables in the functional W1 will be Cκ2 ,
χi, and Θ. Then,

Ẇ1 =
∂W1

∂Cκ2

·· Ċκ2 +
∂W1

∂χi
χ̇i +

∂W1

∂Θ
Θ̇ =

( t∫

0

∂2W

∂C2
E

·· Ċκ2 dτ
)
·· Ċκ2

+

t∫

0

[ τ∫

0

( ∂3W

∂χi ∂C2
E

χ̇i +
∂3W

∂Θ ∂C2
E

Θ̇
)
·· Ċκ2 dτ1

]
·· Ċκ2 dτ. (2.2)

If we set W = W (CE(τ), χi(t), Θ(t)), i.e., if the elastic potential W contains the functions χi and temperature Θ
as parameters dependent on the current time t, this result can be obtained by direct differentiation of the func-
tional (2.1) with respect to t. With the use of relation (1.7), this functional can be written as

W1 = 4

t∫

0

{
F ·

[ τ1∫

0

(
F

3◦ ∂2W

∂C2
E

· F t
)
··DE dτ2

]
· F t

}
··DE dτ1. (2.3)

Here the sign “3◦” denotes scalar premultiplication of the second rank tensor F into the third basis vector of the
fourth-rank tensor ∂2W/∂C2

E .
The functional W1 is referred not to unit mass but to unit undeformed volume; therefore, ρ0Ψ1 = W1 and

Ψ = W1/ρ0 + Ψ2(Θ), where ρ0 is the mass density in the initial configuration. Since ρ = J−1ρ0 (J is the Jacobian
which defines the relative volume change), then, substituting the expressions for D, Ψ̇, ρ into the Clausius–Duhem
inequality, we have (

T − 2J−1F · ∂W1

∂Cκ2

· F t
)
·· ėE + T ·· ėIN + T ·· ėΘ

− J−1 ∂W1

∂χi
χ̇i − J−1ρ0

( 1
ρ0

∂W1

∂Θ
+

∂Ψ2

∂Θ
+ s

)
Θ̇ − q · ∇̃ ln Θ � 0. (2.4)

We construct a local continuation of the process [9] and relate ėΘ with the variation in the temperature Θ̇ by the
simple law of linear temperature expansion ėΘ = βΘ̇g, where β is the linear temperature expansion coefficient,
which is assumed to be a function of only the temperature. As a result, for the derivative ∂W1/∂Cκ2 , in view (2.2),
we obtain

T = J−1F · PII · F t,
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PII = 2

t∫

0

∂2W

∂C2
E

·· Ċκ2 dτ = 4

t∫

0

(
F

3◦ ∂2W

∂C2
E

· F t
)
··DE dτ,

(2.5)

where PII is the symmetric Piola–Kirchhoff stress tensor,

s = J
β

ρ0
I1(T ) − 1

ρ0

∂W1

∂Θ
− ∂Ψ2

∂Θ
, T ·· ėIN − J−1 ∂W1

∂χi
χ̇i − q · ∇̃ ln Θ � 0. (2.6)

The thermodynamic inequality in (2.6) is satisfied if we set ėIN = α1T (α1 > 0), which corresponds to the differential
viscosity law, or if we set ėIN = α2S (α2 > 0; S is the deviator of the tensor T ), which corresponds to the associate
plastic law χ̇i = −α3(∂Ψ/∂χi) (α3 > 0), and if we assume, in particular, that the heat flux q = −λ∇̃Θ (the thermal
conductivity λ > 0) satisfies the Fourier equation (for the assumption for the general case see, for example, in [10]).

In view of relations (2.5), the functional (2.1), (2.3) can be written as

W1 =
1
2

t∫

0

PII ·· Ċκ2 dτ =

t∫

0

JT ··DE dτ. (2.7)

Relations (2.2) and (2.5) imply that if deformation is due to only inelastic and temperature effects [Ċκ2 = 0
(DE = 0) throughout the process], the stress T and the derivative ∂W1/∂Θ vanish. Then, relation (2.6) for the
entropy implies that

s = −∂Ψ2

∂Θ
, s

∣∣∣
Θ=Θ0

= −∂Ψ2

∂Θ

∣∣∣
Θ=Θ0

= 0.

From the first law of thermodynamics,

ρ(Ψ̇ + sΘ̇ + Θṡ) = T ··D + ρΩ − ∇̃ · q, (2.8)

where Ω is the specific rate of heat production by internal sources; for this case (similarly to [11]), we obtain

−ρΘ
∂2Ψ2

∂Θ2
Θ̇ = ρQ̇,

and, hence,

−Θ
∂2Ψ2

∂Θ2
=

dQ

dΘ
= cT

(ρQ̇ = ρΩ − ∇̃ · q is the rate of change of the heat transferred to unit mass and cT is the thermal conductivity of
unit mass under zero stress). Assuming that cT depends only on the temperature and writing this relation as

cT = cT0 +

Θ∫

Θ0

cT1(Θ1) dΘ1,

in view of the above initial conditions, we have

∂Ψ2

∂Θ
= cT0 ln

Θ0

Θ
−

Θ∫

Θ0

ln
( Θ

Θ1

)
cT1(Θ1) dΘ1,

Ψ2 = cT0

(
Θ ln

Θ0

Θ
+ (Θ − Θ0)

)
−

Θ∫

Θ0

(
Θ ln

Θ
Θ1

− (Θ − Θ1)
)
cT1(Θ1) dΘ1.

(2.9)

As a result, relation (2.6) for entropy becomes

s =
Jβ

ρ0
I1(T ) − 1

ρ0

∂W1

∂Θ
− cT0 ln

Θ0

Θ
+

Θ∫

Θ0

ln
( Θ

Θ1

)
cT1(Θ1) dΘ1. (2.10)

Reverting to the first law of thermodynamics (2.8) and using the expressions for Ψ and relation (2.9)
and (2.10), we determine the internal (intrinsic) dissipation ϕ = T ··D − ρ(Ψ̇ + sΘ̇). As a result, we have ϕ =
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T ··DIN − J−1W1,χi χ̇i. With the use of the Fourier equation for the heat flux, the entropy production can be
represented as

ρΘṡ = T ··DIN − J−1W1,χi χ̇i + ρΩ + ∇̃ · (λ∇̃Θ). (2.11)

Entropy is produced by external heat sources [the last two terms on the right of Eq. (2.11)] and latent sources [the
first two terms on the right of Eq. (2.11)], which depend on the inelastic deformation power and changes in the
internal structure of the material. The fraction of the energy of the latent sources converted to heat is determined
from the heat-conduction equation.

By virtue of the principle of equipresence, the arguments for the entropy are the tensor Cκ2 , the scalar
functions χi, and the temperature Θ. In this case,

ṡ =
∂s

∂Cκ2

·· Ċκ2 +
∂s

∂χi
χ̇i +

∂s

∂Θ
Θ̇.

Substituting this expression into the left side of relation (2.11) and taking into account (1.7), we obtain the heat-
conduction equation

cΘ̇ = Q̇E + Q̇IN + ρΩ + ∇̃ · (λ∇̃Θ),

where c = ρΘ(∂s/∂Θ) is the heat capacity and Q̇E is the rate of heat production by elastic deformations:

Q̇E = −2ρΘ
(
F · ∂s

∂Cκ2

· F t
)
··DE ;

Q̇IN is the rate of heat production by inelastic deformations and structural changes in the material:

Q̇IN = T ··DIN − χ̇i

(
J−1W1,χi + ρΘ

∂s

∂χi

)
.

The heat-conduction equation obtained by differentiation of relation (2.10) with respect to time is more convenient
for work. After simple transformations, we have

(β,ΘΘI1(T ) + J−1ρ0cT )Θ̇ +
[
β(I1(T )I1(D) + I1(Ṫ )) − J−1 d

dt
(W1,Θ)

]
Θ

= T ··DIN − J−1W1,χi χ̇i + ρΩ + ∇̃ · (λ∇̃Θ). (2.12)

Here I1 is the first invariant of the correspond tensor and f,α = ∂f/∂α. Taking into account that

I1(Ṫ ) = 2T ··D − I1(T )I1(D) + g ··
(
2J−1F · d

dt

( ∂W1

∂Cκ2

)
· F t

)
,

d

dt

( ∂W1

∂Cκ2

)
=

1
2

dPII

dt
=

∂2W

∂C2
E

·· Ċκ2 +
1
2

(PII,χi χ̇i + PII,ΘΘ̇),

d

dt

(∂W1

∂Θ

)
= JT,Θ ··DE + χ̇i

t∫

0

JT,Θχi ··DE dτ + Θ̇

t∫

0

JT,ΘΘ ··DE dτ,

from Eq. (2.12), we obtain the following relations for the heat capacity and the rate of heat production by elastic
and inelastic deformations and structural changes in the material:

c = J−1ρ0cT + Θ
[
(β,Θ + 2β2)I1(T ) + βI1(T,Θ) − J−1

t∫

0

JT,ΘΘ ··DE dτ
]
,

Q̇E = Θ[T,Θ − 2βT − β(g ·· L̃IV
6 )] ··DE ,

Q̇IN = (1 − 2βΘ)T ··DIN + χ̇i

[
J−1

t∫

0

J(Θ(t)T,Θχi − T,χi) ··DE dτ − βΘI1(T,χi)
]
.
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The fourth-rank tensor L̃IV
6 present in these relations defines the properties of the material at the current time.

The general expression for this tensor was obtained in [3]:

L̃IV
6 = 4J−1F ·

(
F

3◦ ∂2W

∂C2
E

2∗ F t
)
· F t.

Here the sign “2∗” denotes the scalar multiplication from the right of the second rank tensor (in this case, F t) into
the second basis vector of the fourth-rank tensor (in this case, ∂2W/∂C2

E).
3. Limitations Following from the Principle of Objectivity. Equations (2.4), (2.6), (2.7), and (2.12)

contain the powers T ·· ėE , T ·· ėIN , and T ·· ėΘ. Let us consider their transformation under rigid-body rotation of
the current, inelastic, temperature, and initial configurations.

In relation (1.8), the gradients FΘ transform the initial configuration κ0 into the configuration κ1, which, in
turn, is the initial configuration for the gradient FIN , which transforms this configuration into the configuration κ2,
which is converted to the current configuration κ by the gradient FE :

F : κ0 → κ; FΘ: κ0 → κ1; FIN : κ1 → κ2; FE : κ2 → κ.

Following [12, 13], we examine how these gradients are transformed under changes in the reference systems with
respect to which the motions resulting in the configurations κ1, κ2, and κ are determined, and under a change
in the reference system in which the quantities determining the initial configuration κ0 are described. In other
words, we examine how the gradients F , FE , FIN , and FΘ change under translation and rigid-body rotation of the
configurations κ, κ2, κ1, and κ0.

For a change of only the current configuration corresponding to the time t and the remaining configurations
unchanged, we have

F ′ = O · F, F ′
E = O · FE , F ′

IN = FIN , F ′
Θ = FΘ. (3.1)

Here all gradients are determined at the time t. For a rigid-body transformation of only the configuration κ2

corresponding to the time t with the remaining configurations unchanged, we have

F ′ = F, F ′
E = FE · Ot

IN , F ′
IN = OIN · FIN , F ′

Θ = FΘ. (3.2)

For a rigid-body transformation of only the configuration κ1 corresponding to the time t with the remaining
configurations unchanged, we obtain the relations

F ′ = F, F ′
E = FE , F ′

IN = FIN · Ot
Θ, F ′

Θ = OΘ · FΘ. (3.3)

Finally, for a change in the initial configuration κ0, we have

F ′ = F · O0, F ′
E = FE , F ′

IN = FIN , F ′
Θ = FΘ · O0. (3.4)

In the case of changes in all configurations, relations (3.1)–(3.4) imply

F ′ = O · F · O0, F ′
E = O · FE · Ot

IN , (3.5)

F ′
IN = OIN · FIN · Ot

Θ, F ′
Θ = OΘ · FΘ · O0.

In view of (3.5), following [13], we elucidate how the powers T ·· ėE , T ·· ėIN , and T ·· ėΘ change under rigid-body
rotation of the configurations κ, κ2, κ1, and κ0 under the action of the introduced orthogonal tensors. The true-
stress tensor is an objective tensor, and, hence, T ′ = O · T · Ot. It has been shown [3] that the elastic and inelastic
rate gradients lE = (∇̃vE)t and lIN = (∇̃vIN )t are written as

lE = ḞE · F−1
E = ėE + ḋE , lIN = FE · ḞIN · F−1

IN · F−1
E = ėIN + ḋIN .

Similarly, it can be shown that

lΘ = FIN · FE · ḞΘ · F−1
Θ · F−1

E · F−1
IN = ėΘ + ḋΘ [lΘ = (∇̃vΘ)t].

In view of relations (3.5), we determine l′E , l′IN , and l′Θ. As a result, we have

T ′ ·· ė′E = T ′ ·· l′E = T ·· ėE + (F−1
E · T · FE) ··(Ȯt

IN · OIN ),

T ′ ·· ė′IN = T ′ ·· l′IN = T ·· ėIN − (F−1
E · T · FE) ··(Ȯt

IN · OIN ) + (F−1
IN · F−1

E · T · FE · FIN ) ··(Ȯt
Θ · OΘ), (3.6)
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T ′ ·· ė′Θ = T ′ ·· l′Θ = T ·· ėΘ − (F−1
IN · F−1

E · T · FE · FIN ) ··(Ȯt
Θ · OΘ)

+ (F−1
Θ · F−1

IN · F−1
E · T · FE · FIN · FΘ) ··(Ȯ0 · Ot

0).

The last term in the third expression vanishes since the tensor O0 defining the initial anisotropy of the material
does not depend on time.

From the above relations it follows that the total power is an invariant quantity: T ′ ·· ė′ = T ·· ė [the Noll
axiom (see [9])]. However, the powers of elastic deformation and mechanical and thermal dissipation depend on
the rigid transformations of the configurations κ2 and κ1 due to the terms containing double scalar multiplication
by skew-symmetric tensors (spins) AIN = Ȯt

IN · OIN and AΘ = Ȯt
Θ · OΘ. If these terms do not vanish, by an

appropriate choice of the tensors OIN and OΘ, one can obtain powers of elastic deformation and mechanical and
thermal dissipation of arbitrary magnitude and sign due only to rigid changes in the reference configurations. These
terms vanish in two cases: 1) if the rotation tensors of the spins AIN and AΘ are symmetric; 2) if RIN = g and
RΘ = g at any time [RIN and RΘ are the orthogonal tensors in the polar decompositions of the site gradients FIN

and FΘ, respectively]. The first condition is satisfied only for a purely elastic process with initial isotropy of
the material (see [13]). In the case of an elastic–inelastic process, this condition is not satisfied, as follows from
expressions (2.5). Since relations (3.6) are valid for any orthogonal tensors OIN and OΘ, then, setting OIN = RIN

and OΘ = RΘ, we obtain the second condition. As a result, the total site gradient is represented as F = FE ·UIN ·UΘ,
where UIN and UΘ are symmetric positive definite tensors of pure strains in the polar decomposition of the site
gradients FIN = RIN · UIN , FΘ = RΘ · UΘ, and RIN = g, RΘ = g. Thus, we proved the necessary invariance
condition for the power of elastic deformation and mechanical and thermal dissipation under rigid transformations
of the reference configurations, which is also a sufficient condition. Indeed, provided that RIN = g and RΘ = g and
that only the current configuration changes, we have

F ′ = O · F, F ′
E = O · FE , U ′

IN = UIN , U ′
Θ = UΘ.

For rigid-body transformation of only the configuration κ2, we obtain

F ′ = F, F ′
E = FE , U ′

IN = UIN , U ′
Θ = UΘ,

and for rigid-body transformation of only the configuration κ1, we obtain

F ′ = F, F ′
E = FE , U ′

IN = UIN , U ′
Θ = UΘ.

Finally, for a change in the initial configuration κ0, we have

F ′ = F · O0, F ′
E = FE · O0, U ′

IN = Ot
0 · UIN · O0, U ′

Θ = Ot
0 · UΘ · O0.

As a result, for changes in all configurations, we obtain

F ′ = O · F · O0, F ′
E = O · FE · O0,

U ′
IN = Ot

0 · UIN · O0, U ′
Θ = Ot

0 · UΘ · O0.

Using these expressions and calculating (with allowance for the time independence of O0) the quantities

l′E = Ḟ ′
E · (F ′

E)−1, l′IN = F ′
E · U̇ ′

IN · (U ′
IN )−1 · (F ′

E)−1,

l′Θ = U ′
IN · F ′

E · U̇ ′
Θ · (U ′

Θ)−1 · (F ′
E)−1 · (U ′

IN )−1,

we find that the powers of elastic deformation and mechanical and thermal dissipation are invariant under rigid
transformations of the reference configurations. This statement implies objectivity of all relations in Sec. 2.

Conclusions. Within the framework of the kinematics determined by the imposition of elastic–inelastic
site gradients (which transform an intermediate configuration into a close current configuration) onto finite elastic–
inelastic site gradients (which transform the initial configuration into an intermediate configuration), similarly to [3],
we derived a representation of the total site gradient in terms of an elastic, inelastic, and temperature site gradients
that coincides in shape with the well-known Lie representation but is free from the drawbacks of the latter. It was
shown that by virtue of the principle of objectivity, as in the Lie representation, the inelastic and temperature site
gradients should be pure deformations without rotations.
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Stress and entropy relations based on thermodynamics were derived and a heat-conduction equation was
constructed using the functional introduced in [3] as one of the terms in the free energy expression. In this
functional, the constants appearing in the fourth-rank tensor that defines the material properties at the current
time and depends only on the elastic kinematics, were assumed to be functions of temperature and the scalar
structural parameters determined by the inelastic kinematics.
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and Control Processes of the Russian Academy of Sciences and Integration program of the Ural Division, Siberian
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